Contacta con nosotros

Ciencia

El potencial geotérmico del Bierzo y otras zonas de España permitiría producir cinco veces la energía eléctrica instalada

Publicado

el

Mapa de flujo de calor en superficie de la península ibérica. / UVa-www.lacasig.com

Mapa de flujo de calor en superficie de la península ibérica. / UVa-www.lacasig.com

La geotermia se utiliza desde hace años para generar electricidad a pequeña escala, en instalaciones hoteleras, viviendas, etc, pero un reciente estudio de la Universidad de Valladolid ha cuantificado la energía eléctrica que se podría producir a partir del calor existente en los diez primeros kilómetros bajo la superficie terrestre. Las cifras no pueden ser más reveladoras, alrededor de 700 gigavatios, o lo que es lo mismo, cinco veces la capacidad eléctrica instalada en este país. El Bierzo y el noroeste de Castilla y León, junto con Galicia, Sistema Central, Andalucía y Cataluña son las zonas con mayor capacidad.

FUENTE: SINC

La temperatura aumenta 30 ºC cada kilómetro que se desciende bajo tierra. Este gradiente térmico, generado por el flujo de calor del interior de la Tierra y la desintegración de los elementos radiactivos en la corteza, produce energía geotérmica. Cerca de 500 centrales en todo el mundo ya la utilizan para generar electricidad, aunque en España todavía no hay ninguna.

Sin embargo, el subsuelo de la península ibérica tiene capacidad para producir hasta 700 gigavatios si se explotara este recurso con sistemas geotérmicos estimulados (EGS, por sus siglas en inglés) a entre 3 y 10 kilómetros de profundidad, donde las temperaturas superan los 150 ºC. Así lo confirma un estudio que ingenieros de la Universidad de Valladolid (Uva) publican en la revista Renewable Energy.

“La explotación de un sistema EGS pasa por la inyección de un fluido –agua o dióxido de carbono– para extraer energía térmica de la roca situada unos pocos miles de metros bajo la superficie, y cuya permeabilidad se ha mejorado o estimulado previamente con procesos de fracturación”, explica César Chamorro, uno de los autores. “Después, el fluido calentado se lleva arriba a la central geotérmica, donde se produce electricidad, generalmente mediante un ciclo binario (con intercambio de calor entre el agua y un líquido orgánico), y se vuelve a inyectar al yacimiento en un ciclo cerrado”.

Aunque existen estaciones EGS experimentales en países como EE UU, Australia y Japón, solo hay una conectada a la red: la de Soultz-sous-Forêts en Francia. El resto de las centrales geotérmicas actuales están en las pocas zonas de la Tierra donde se producen anomalías térmicas y presencia de agua caliente a poca profundidad.

Central de Soultz-sous-Forêts en Francia. / BRGM-ADEME

Central de Soultz-sous-Forêts en Francia. / BRGM-ADEME

“Sin embargo, los recursos EGS se distribuyen de forma amplia y uniforme, por lo que su potencial es enorme y podría proporcionar una potencia significativa a medio o largo plazo, de forma constante las 24 horas del día”, destaca Chamorro, que compara: “Los 700 GW eléctricos que indica el estudio representan aproximadamente unas cinco veces la actual potencia eléctrica instalada en España, si sumamos la de los combustibles fósiles, la nuclear y la renovable”.

El potencial técnico y el potencial renovable

“Incluso si limitamos el cálculo hasta los 7 km de profundidad –añade–, el potencial alcanza los 190 GW; y entre los 3 y 5 km sería 30 GW”. Todos estos datos hacen referencia al llamado ‘potencial técnico’, que supone un enfriamiento (mediante agua) de 10 ºC en rocas que estén al menos a 150 ºC para extraer una fracción de energía durante un periodo de explotación de 30 años.

Existe otro potencial, el renovable o sostenible, que solo considera la energía eléctrica que se podría obtener si se aprovechara el flujo térmico al ritmo que llega a la corteza desde el interior de la Tierra. Este valor es significativamente menor, y en el caso de España se estima en 3,2 GW. “Parece poco, pero es el equivalente a tres centrales nucleares”, apunta el ingeniero, quien aclara que el límite de potencia instalable sería un valor intermedio entre el potencial técnico y el renovable.

Según el estudio, las regiones en las que se alcanzan mayores temperaturas a menores profundidades, y por tanto, con mayor potencial geotérmico y susceptibles de estudios más detallados para su desarrollo, son Galicia, oeste de Castilla y León, Sistema Central, Andalucía y Cataluña. El motivo es que en su subsuelo hay mayor fricción entre placas del zócalo y presencia de materiales graníticos. Los resultados son una referencia a escala regional, por lo que la instalación de una central geotérmica en un lugar concreto requeriría estudios más detallados.

Para estimar las temperaturas a distintas profundidades (desde los 3.500 m hasta los 9.500 m de profundidad) los investigadores han partido del flujo de calor y temperaturas a 1.000 m y 2.000 m que ofrece el Atlas de Recursos Geotérmicos de Europa, así como de lo datos térmicos de la superficie terrestre que facilita la NASA.

Con esta misma información aplicada a toda Europa los investigadores han publicado otro estudio, en la revista Energy, donde comparan los potenciales de cada país. Turquía, Islandia y Francia son los que presentan mayor potencial. En conjunto, el potencial técnico del continente supera los 6.500 GW eléctricos.

Respeto a la implantación de la tecnología EGS, los autores reconocen que todavía hay problemas importantes que se deben investigar, como las técnicas idóneas de perforación, la mejor forma de fracturar la roca o cómo operar ciclos termodinámicos avanzados.

“Pero cuando se resuelvan se podrá pasar de la viabilidad técnica alcanzada hoy a la viabilidad económica que permita su explotación comercial”, apunta Chamorro. Según un informe del Instituto Tecnológico de Massachusetts (MIT), con una adecuada inversión en I+D, en 2050 se podrían instalar 100 GW eléctricos con esta tecnología en EE UU.

“En el caso de España, los sistemas EGS también podrían tener una contribución significativa al mix energético nacional, reduciendo la dependencia energética del exterior y disminuyendo las emisiones de gases de efecto invernadero”, concluye el ingeniero.

[box style=»4″]

Referencias bibliográficas:

Chamorro, C.R., García-Cuesta, J.L., Mondéjar, M.E., Linares, M.M. “An estimation of the enhanced geothermal systems potential for the Iberian Peninsula”.  Renewable Energy  66: 1 – 14 , 2014. Doi: 10.1016/j.renene.2013.11.065

Chamorro, C.R., García-Cuesta, J.L., Mondéjar, M.E., Pérez-Madrazo, A. “Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials”. Energy  65: 250 – 263  , 2014. Doi: 10.1016/j.energy.2013.11.078

[/box]

Publicidad
Clic para comentar

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Ciencia

Ciuden comenzará a producir hidrógeno verde a partir de octubre de 2025

Publicado

el

Por

Ciuden desarrolla cuatro grandes proyectos relacionados con el hidrogeno verde con el 90% de los 30 millones ya licitados de fondos PRTR . A través de la utilización de dos tecnologías diferentes espera iniciar la producción en los años 2025 y 2026

A través del área de Innovación e Investigación Energética de la Fundación Ciudad de la Energía, y con el 90% licitado de los 30 millones recibidos de fondos del Plan de Recuperación, Transformación y Resiliencia (PRTR), las instalaciones de Ciuden en Cubillos del Sil empezarán a producir hidrógeno verde a partir de octubre de 2025, según lo ha confirmado hoy el responsable de I+D+i, Alberto Gómez.

«Se va a iniciar el proyecto en tres semanas, ya se ha firmado hace dos días, para la fabricación de hidrógeno verde con una tecnología de electrólisis con membrana (PEM), que es una de las dos tecnologías por las que hemos apostado, la otra es la de óxido-sólido», ha señalado Gómez. Una tecnología esta última que necesita más desarrollo por ser más compleja y cara. Está en fase de evaluación y se espera firmar el acuerdo con una de las empresas interesadas antes de fin de año para empezar a producir hidrógeno en mayo de 2026.

Por otro lado, Ciuden va a adquirir dos plantas piloto para la producción de e-fuels, de metanol, a partir de hidrógeno verde y CO2 capturado, y de gas natural sintético con 1millón de euros y 1,3 millones de euros, respectivamente.

«El día 29 del mes pasado vinieron a Ciuden 30 personas de más de 12 empresas para informarse sobre el desarrollo de estos proyectos y sus fases, que tienen una complejidad administrativa y jurídica muy importante», ha añadido Gómez.

Paralelamente, Ciuden participa en cuatro grandes proyectos europeos relacionados con el hidrógeno verde: para el tratamiento del fosfoyeso en nuevas aplicaciones y usos como fertilizantes y baterías (Fic-Fighters) con 369.353 euros; para la obtención de hidrógeno verde a partir de biomasa (Integra2H2) con 349.502 euros; para la gestión optimizada del hidrógeno verde generado a partir de energías renovables (Hystorenew); y para el desarrollo de tecnologías que permitan cero emisiones con el desarrollo de la oxicombustión a partir de biomasa adaptando las propias instalaciones de Cubillos (BioNet Zero) con 443.750 euros.

Además, Ciuden trabaja, en colaboración con Naturgy, para dar una segunda vida a las baterías de los coches.

Por último, como ha explicado el responsable también de I+D+i de Ciuden, Javier Quiñones se está desarrollando la utilización del hidrógeno verde en el sector de ferrocarril donde el 30% de las máquinas funcionan con combustibles fósiles, y la creación de un laboratorio de ciberseguridad industrial, en colaboración con el INCIBE, para analizar los nuevos retos a los que se enfrentan las instalaciones energéticas.

Presentación del balance de actividades de Ciuden en Cubillos del Sil. Foto: Raúl Cañas

Otras áreas de trabajo de CIUDEN

Los datos del área de Innovación e Investigación Energética se han aportado hoy en las propias instalaciones de Ciuden en Cubillos, en una convocatoria de prensa en la que los responsables de las áreas de Formación y Producción de Planta, José Luis del Riego; Museos, Patrimonio y Cultura, Concepción Fernández; y la propia directora general de CIUDEN, Yasodhara López, ha hecho balance de las actividades desarrolladas durante el último año.

La Directora General ha destacado que la Fundación continúa con su proceso de apertura y colaboración con otras entidades y empresas de ámbito nacional e internacional. Como ejemplo ha recordado la coordinación que realiza Ciuden como nodo central de la Red de Centros de Innovación Territorial (CIT) para facilitar la colaboración en proyectos de transformación territorial que permiten luchar contra la despoblación, y que ya cuenta con centros en 10 provincias de España.

En el área de Formación y Producción de Planta, como ha recordado su responsable José Luis del Riego, Ciuden Vivero ha producido más de 25.000 plantas, con donaciones de 5.000 de ellas a proyectos como el Anillo Verde de Ponferrada, y de 8.000 castaños a la Diputación de León. En el centro se ha realizado también trabajo de investigación y se están produciendo 200 helechos arborescentes para completar la colección de Fuego Verde de la Térmica Cultural. Por otro lado, con los tres programas de formación realizados se ha logrado generar 64 puestos de trabajo.

Museos, Patrimonio y Cultura es una de las áreas más conocidas por la actividad que se genera en el Museo de la Energía y la Térmica Cultural, con un gran número de exposiciones y actividades realizadas, algunas de ellas a través del programa de ámbito nacional Dinamiz-ARTj. Además, en este último año ha puesto en marcha el proyecto de la recicladora cultural, con 15 protocolos de colaboración ya firmados y 15 exposiciones ya alojadas o en itinerancia.

Continuar leyendo

Ciencia

Naturgy y CIUDEN ponen en marcha en Cubillos su primer proyecto de baterías de vehículos de segunda vida

Publicado

el

Este proyecto, que se desarrolla en Cubillos del Sil, aborda uno de los grandes retos de futuro, como lo es encontrar una nueva utilidad para las baterías de vehículos eléctricos al final de su vida útil, un residuo que crecerá significativamente en los próximos años
Equipo de trabajo Naturgy-Ciuden

Naturgy, en colaboración con la Fundación Ciudad de la Energía (CIUDEN) adscrita al Instituto para la Transición Justa (ITJ) dependiente del Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO), ha finalizado con éxito las primeras pruebas para la instalación y puesta en marcha de un sistema de almacenamiento energético basado en baterías de segunda vida procedentes de vehículos eléctricos de la marca Mercedes-Benz. Las baterías empleadas para las pruebas tienen una doble procedencia: o bien habían sido descartadas en la fábrica de la marca automovilística debido a una degradación temporal o retiradas de circulación tras su uso en carretera.

En el marco de este proyecto, se han instalado aproximadamente 0,5 MWh de capacidad de almacenamiento energético mediante estos sistemas de baterías de segunda vida. Durante los próximos dos años, se llevarán a cabo pruebas exhaustivas para analizar cómo se comportan las baterías en distintas situaciones, para obtener información sobre su rendimiento y degradación bajo diferentes escenarios de uso, ayudando a determinar su viabilidad y eficiencia en el largo plazo.

Jesús Chapado, quien dirige el área de Innovación de Naturgy, ha señalado que “este proyecto aborda uno de los grandes retos de futuro, como lo es encontrar una nueva utilidad para las baterías de vehículos eléctricos al final de su vida útil, un residuo que está destinado a crecer significativamente en los próximos años. Sin duda, la innovación es la herramienta clave en la búsqueda de soluciones energéticas limpias para la transición en la que nos encontramos inmersos”.

Por su parte, Javier Quiñones, director ejecutivo del área de I+D+i de CIUDEN, ha indicado que “este proyecto demuestra cómo ideas basadas en la economía circular permiten un significativo avance en la descarbonización de nuestra sociedad. Los resultados de esta colaboración público-privada serán impulsores tanto desde el punto de vista mercantil, como del desarrollo en la utilización de energías renovables, minimización de la huella de carbono y de la generación de residuos. Desde CIUDEN nos sentimos orgullosos de que nuestro Centro de Desarrollo de Tecnologías sea visto por las empresas del sector energético como una herramienta de valor en el desarrollo y/o evaluación de sus productos comerciales.”

El potencial de las baterías de segunda vida

Este proyecto, iniciado hace un año, permite extraer el potencial de las baterías que ya no son adecuadas para su uso en automoción. Lejos de ser inservibles, las baterías de segunda vida permiten explotar su utilidad en otras aplicaciones, generando así beneficios económicos y ambientales.

Darles un nuevo uso antes de su reciclaje reduce la generación de residuos y mitiga la explotación de recursos naturales, como los minerales necesarios para su fabricación. Se trata de una iniciativa coherente con la transición energética, en la que las soluciones de almacenamiento deben ser tan sostenibles como las fuentes de energía que apoyan.

Una vez que las baterías alcanzan el final de su vida útil en los vehículos eléctricos, aún conservan entre el 70% y el 80% de su capacidad. Esta capacidad residual las convierte en candidatas ideales para aplicaciones estacionarias, como el almacenamiento de energía renovable o para prestar servicios a la red eléctrica. Al reutilizarlas, se extiende su ciclo de vida, se reduce su impacto ambiental y se incrementa la proporción de energía limpia que se integra en la red. Además, se generan beneficios económicos al reducir los costes asociados a su eliminación y al convertirlas en un activo residual valioso.

Con este proyecto, los sistemas de almacenamiento generados, con mayor potencia y duración que las baterías de vehículos de los que parten, permitirán el almacenamiento de energía tanto en proyectos hibridados con plantas renovables como stand alone, por lo que sus aplicaciones pueden ser diversas y servir para proveer servicios de soporte a la red eléctrica. Este sistema puede estar formado por tantos módulos de baterías como capacidad de almacenamiento se quiera alcanzar, y se trata de una solución que se podría emplear tanto para dar soporte a la red eléctrica como para el ámbito industrial y residencial asociado a instalaciones de autoconsumo.

Naturgy y CIUDEN, una alianza por la sostenibilidad y la innovación

Este proyecto es un claro ejemplo de economía circular, ya que aprovecha recursos existentes- las baterías de segunda vida de vehículos eléctricos- prolongando su vida útil y reduciendo el impacto ambiental generado por su reciclaje. Además, el sector del almacenamiento energético es clave para asegurar la estabilidad y flexibilidad de la red eléctrica, algo esencial a medida que aumenta la penetración de energías renovables.

Teniendo esto en cuenta, Naturgy Innovahub y CIUDEN firmaron en 2023 un acuerdo de colaboración para evaluar el comportamiento de las baterías de segunda vida a lo largo de dos años de pruebas. El proyecto se está desarrollando en las instalaciones del Centro de Desarrollo de Tecnologías de CIUDEN en Cubillos del Sil, y sumará la participación de la startup europea Octave, que se encargará de realizar el reacondicionamiento de las baterías, así como de desarrollar e integrar el software de control del sistema de almacenamiento.
Esta iniciativa conjunta subraya el compromiso de ambas entidades con la innovación tecnológica y la sostenibilidad, especialmente en el campo del almacenamiento energético, un pilar fundamental en la transición hacia un modelo energético más sostenible y descarbonizado. De esta forma, ambas organizaciones apuestan por convertir los residuos de hoy en las soluciones energéticas del mañana.

Continuar leyendo

Ciencia

Investigadores del Campus de Ponferrada identifican un gen para evitar daños en cultivos agrícolas causados por micotoxinas

Publicado

el

El trabajo liderado por Santiago Gutiérrez Martín ha sido publicado en la revista ‘Applied Microbiology and BiotEchnology’
Santiago Gutiérrez y José Álvarez

Científicos del Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS) de la Universidad de León (ULE), en colaboración con la Unidad de Investigación de Microbiología Aplicada y Prevención de Micotoxinas del Servicio de Investigación Agrícola (USDA), de los Estados Unidos, han identificado un gen que es clave para la síntesis de un tipo de micotoxinas que ocasiona daños en cultivos agrícolas.

Paramyrothecium roridum, -explica la investigadora de la ULE y firmante del artículo Rosa E. Cardoza-, es un hongo patógeno que puede causar la enfermedad de la mancha foliar en cultivos hortícolas, y produce además una serie de toxinas que se conocen como trichotecemos macrocíclicos, y que contribuyen a la toxigenicidad, y a la patogenicidad vegetal de este hongo”.

Síntomas de la enfermedad en hojas de tomate

Existen al menos 4 tipos de trichotecenos producidos por diferentes especies de hongos. Todos ellos tienen la misma estructura central (12,13-epoxitricoteco-9-eno o EPT), en el caso de las micotoxinas producidas por P. roridum, presentan un anillo macrocíclico en su estructura que determina el grado de toxicidad de este compuesto.

La investigación, desarrollada casi en su totalidad en el Campus de Ponferrada de la ULE y liderada por Santiago Gutiérrez Martín, se centró en realizar análisis genómicos, transcriptómicos, metabolómicos y de deleción de genes, identificando el gen TRI24, que codifica para una aciltransferasa.

La deleción del gen TRI24, demostró que es necesario para la formación del anillo macrocíclico durante la biosíntesis de estos compuestos en el hongo P. roridum, y que en ensayos hechos con el mutante, se observaron síntomas de enfermedad menos graves en el frijol común y en plantas de tomate, y tuvo menos actividad antifúngica que su cepa progenitora de tipo silvestre.

Hasta donde sabemos, -concluye Rosa E. Cardoza-, este es el primer informe de un gen requerido específicamente para la formación del anillo macrocíclico de tricotecenos, y que la pérdida del anillo macrocíclico de tricotecenos puede alterar las actividades biológicas de un hongo”.

Continuar leyendo
Publicidad

Trending

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies